Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs
نویسندگان
چکیده
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملDetection of Tooth caries in Bitewing Radiographs using Deep Learning
We develop a Computer Aided Diagnosis (CAD) system, which enhances the performance of dentists in detecting wide range of dental caries. The CAD System achieves this by acting as a second opinion for the dentists with way higher sensitivity on the task of detecting cavities than the dentists themselves. We develop annotated dataset of more than 3000 bitewing radiographs and utilize it for devel...
متن کاملDeep metric learning for multi-labelled radiographs
Many radiological studies can reveal the presence of several co-existing abnormalities, each one represented by a distinct visual pattern. In this article we address the problem of learning a distance metric for plain radiographs that captures a notion of “radiological similarity”: two chest radiographs are considered to be similar if they share similar abnormalities. Deep convolutional neural ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Diagnostics
سال: 2020
ISSN: 2075-4418
DOI: 10.3390/diagnostics10060430